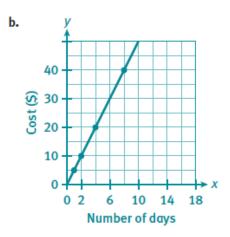
Check Your Understanding (p. 220):

- **1.** Since $2 \times 10 = 20$, multiply 5×10 to find x: $x = 5 \times 10$, or 50.
- 2. Graph the ordered pairs, (*x*, *y*). If a line can be drawn connecting the points and the line goes through (0, 0), the values have a proportional relationship. If the *x* and *y*-values in the table simplify to the same ratio, then the values are proportional.

Lesson 17-1 Practice (p. 220):


3. a.

•	Number of Eggs	1	2	6	10	16
	Cups of Flour	4	8	24	40	64

- **b.** 10 eggs
- c. 24 eggs
- **d.** $\frac{1}{4}$, $\frac{6}{24}$, $\frac{10}{40}$, $\frac{16}{64}$
- e. 1:4

4. a.

Number of Days, x	1	2	4	8
Total Cost (\$), y	5	10	20	40

c. Yes; a line can be drawn connecting the points, and the line goes through (0, 0).

- d. \$30
- **e.** Yes; (10, 50) is a point on the line, so 10:50 is equivalent to 4:20.
- 5. No, $3 \times 2 = 6$, but $2 \times 2 = 4$, not 5. Therefore $\frac{2}{3}$ and $\frac{5}{6}$ are not equivalent ratios
- **6.** Yes, $7 \times 3 = 21$, and $2 \times 3 = 6$. Therefore $\frac{2}{7}$ and $\frac{6}{21}$ are equivalent ratios.
- 7. Yes, $\frac{2}{4} = \frac{1}{2}$ and $\frac{3}{6} = \frac{1}{2}$, so they are equivalent ratios. Also, both ratios, when graphed, are on a line that goes through (0, 0).