$6^{\text {th }}$ Grade Unit 1: Lesson 2-2

Check Your Understanding (p. 32):

9.

(a) 16
(b) 125
(c) 68.89
(d) 1
(e) 13
(f) 1
(g) 100,000
(h) 10,000
(i) 0
(j) 121
(k) 2.197
(I) 392
(m) 243
(n) 4,096
10.
(a) $2^{2} \times 5$
(b) 2×3^{3}
(c) $3^{2} \times 5$
(d) $3^{2} \times 5^{2}$
(e) 2×7^{2}
(f) 3^{6}

Lesson 2-2 Practice (p. 32):

11.

(a) 81
(b) 343
(c) 14.44
(d) 1
(e) 31
(f) 1
(g) 225
(h) 256
12.
(a) $2^{3} \times 5$
(b) $3^{2} \times 7$
(c) $2^{3} \times 3 \times 5$
13.
(a) 10
(b) 100
(c) 1,000
(d) Write 1 followed by the number of zeros given by the power.
14. $2^{6} ; 4^{3} ; 8^{2}$
15. (a) Answers may vary. To find the area of a square, you multiply, using the length of one edge as a factor three times. So, the area of a
square with side length 5 is $5 \times 5=5^{2}$, which is read "five squared."
(b) Answers may vary. To find the volume of a cube, you multiply the length of one side by itself three times. So, the volume of a cube with side length 5 is $5 \times 5 \times 5=5^{3}$, which is read "five cubed."
16. $123,454,321$; Answers may vary. $11^{2}=121$; $111^{2}=12,321 ; 1,111^{2}=1,234,321$. The values show a pattern in the digits that begins with 1 , increases by 1 s to the number of digits in the original number that was squared, then decreases by 1 s back to 1 .

Activity 2 Practice Lesson 2-2 (p. 34):

18.

(a) 27
(b) 81
(c) 2.56
(d) 26
(e) 1
(f) 1
(g) 0
(h) 10,000,000
(i) 4.84
(j) 256
(k) 343
(I) 729
19.
(a) 2^{5}
(b) 2×19
(c) $5^{2} \times 7$
(d) $2^{3} \times 3 \times 5$
(e) $2^{3} \times 3^{3}$
(f) 11×11
20. $3^{4} ; 9^{2}$
21. (a) 5^{2}
(b) The base is 5 . The base is the number that is used as a factor the number of times indicated by the exponent.
(c) The exponent is 2 . The exponent tells how many times the base is used as a factor.
22. 2^{9}
23. D
24. B
25. C
26. C
27. (a) $2^{7} \times 3^{4}$
(b) 9
28. Answers will vary. No, I do not agree. By definition, a prime number has only two factors: 1 and itself.

