$6^{\text {th }}$ Grade Unit 1: Lesson 2-1

Check Your Understanding (p. 29):

1. (a) 2×7
(b) $2 \times 3 \times 5$
(c) $3 \times 3 \times 3$
(d) 2×19
(e) $2 \times 2 \times 3 \times 7$
(f) 1×41
(g) $2 \times 2 \times 5 \times 5$
(h) 7×11
(i) $2 \times 2 \times 3 \times 3 \times 5$
2. Every even number after 2 is divisible by 2.
3. Every number with a 5 in the ones place is divisible by 5 .
4. $2,3,5,7,11,13,17,19,23,29,31,37,41,43$, 47
5. Answers may vary. Sample answer: All of the numbers in a prime factorization must be natural numbers. Since the product of any two natural numbers is also a natural number, the product of any primes in a prime factorization cannot be a decimal.

Lesson 2-1 Practice (p. 29):

6. $\quad 93$ is not prime. $93=3 \times 31$
7. Possible answers:
(a) $14=19-5$
(b) $18=37-19$
(c) $22=41-19$
8. Possible answers:
(a) $16=3+13$
(b) $26=7+19$
(c) $34=3+31$

Activity 2 Practice Lesson 2-1 (p. 33):

1. C
2. D
3. A prime number is a natural number that has exactly two factors, itself and 1. A composite number is a natural number that has more than two factors.
4. 83,89
5. $40,42,44,45,46,48,49,50$
6. (a) Answers may vary. Even numbers all have a factor of 2. Since 59 does not have a factor of 2, it cannot be divisible by an even number.
(b) No; Answers may vary. If 59 is divisible by any test number greater than 29 , the quotient would be a natural number less than 29 . She has already found that 59 is not divisible by any number less than 29, however, so she can conclude that 59 is prime.
7. No; Answers may vary. If the number were divisible by 14 , it would also be visible by the prime factors of 14,2 and 7 . Since it is not divisible by 7, it cannot be divisible by 14 .
8.

(a) $2 \times 3 \times 5$
(b) 3×11
(c) $2 \times 13 \times 13$ or 2×13^{2}
(d) $2 \times 2 \times 2 \times 3 \times 3$ or $2^{3} \times 3^{2}$
(e) 5×13
(f) $2^{2} \times 19$
9. Composite; Answers may vary. The divisibility rule for 3 shows that 147 is divisible by 3 .
$1+4+7=12$. Since 12 is divisible by 3 , then 147 is divisible by 3 .
10. No. 4 is not a prime number.
11. $13,26,39,52,65,78,91$
12. (a) 13 bricks
(b) It is a square because there are 13 rows with 13 bricks in each row.
13. (a) $2 \times 2 \times 3 \times 11$
(b) Answers may vary. 132 is divisible by 2 since it is even: $132 \div 2=66 ; 66$ is divisible by 2 for the same reason: $66 \div 2=33 ; 33$ is divisible by 3 since the sum of its digits, 6 , is divisible by $3 ; 33 \div 3=11.11$ is prime.
14. (a) $2 \times 2 \times 3 \times 3 \times 5$ or $2^{2} \times 3^{2} \times 5$
(b) Any number with zero in the ones place is divisible by 2,5 and 10 .
15. No; every number has one as a factor. To decide whether the number is prime or composite, you must know what its other factors are.
16.
(a) $5+5$
(b) $11+11$
(c) $13+17$
(d) $19+31$
17.
(a) $13-11$
(b) $11-3$
(c) $19-5$
(d) $19-3$

